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Abstract—The thermodynamics of materials with internal state variables has been employed to study the
properties of a class of thermoplastic materials in which the evolution equation for the internal variables is
given by equation

kD = gm(akh G'ILh kw0, 8, er‘:l)

where g" is homogeneous of order one in €}, The most general form of the Helmholtz potential consjstent
with the assumption of insensitivity of the elastic relations to inelastic deformation has been derived and a
geometric interpretation of the Clausius-Duhem restriction has been made employing the concept of a
thermodynamic reference stress. Experimental results of one of the authors have been correlated with the
theory.

1. INTRODUCTION

In this paper, some aspects of the theory of thermoplasticity discussed earlier by Phillips and
Eisenberg[1] and Phillips[2] are developed further and interpreted in the light of recent
experimental work reported by Phillips and Tang[3].

In Section 2 we present a thermodynamic analysis of a plasticity theory which postulates the
existence of a finite number of measures of the effects of prior deformation history upon the
material response. The analysis parallels the Coleman-Gurtin approach[4] to the ther-
modynamics of materials with internal state variables.! The form of the dependence of the
specific Helmholtz free energy ¢ on the deformation and thermal history of the material is
explored in detail. In particular, it is demonstrated that the Clausius-Duhem inequality and
other rather general phenomenological assumptions restrict the form of this dependence, and
that there exists a thermodynamic reference stress o, related to ¢ which plays a central role in
the description of these restrictions. In this section it is shown that oj, may depend in a
complex way upon the mechanical state of the material, that the stress state will not in general
be limited to the interior or boundary of the elastic domain, and that the yield surface in stress
space will, under appropriate circumstances, approach a steady state yield surface.

In Section 3 a simplified theory is presented and a method of experimental evaluation of o
is discussed. We restrict our considerations to the analysis of monotonically increasing radial
loadings. After introducing the concepts of yield and loading surfaces we represent the
stress—strain response in a two-dimensional stress-plastic strain space and introduce the
concept of the upper and lower quasistatic stress—strain curve for a given temperature. Finally,
the location of the thermodynamic reference stress for various amounts of plastic deformation
is shown to be related to the family of quasistatic stress-strain curves for different tem-
peratures.

In Section 4 previously obtained experimental results for aluminum[3] are interpreted in
terms of theory presented in Sections 2 and 3 and conclusions are drawn concerning (1) the
equilibrium stress-strain line, (2) the size of the yield surface as a function of the plastic strain,
(3) the temperature at which the width of the yield surface becomes zero and its relation with
the plastic strain, (4) the length of the straight line to which the yield surface degenerates at the
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above maximum temperature and its relation with the plastic strain, and (5) the relation between
the magnitude of the thermodynamic reference stress and the plastic strain.

2. GENERAL THEORY

We assume that for every temperature 6 = 8*, there exists a region in stress space defined
by scalar functions f and «

f(ou, 8*, history of deformation) = x(8*, history of deformation) n

for which the incremental mechanical response is governed by a linear relation in stress oy,
strain €y, and temperature. In stress-temperature configuration space, there exists, at each
instant in the history of the material a domain of elastic response. The boundary of this domain
is defined by

f(ow, 8, history of deformation) = «(8, history of deformation). 2)

The one parameter family of surfaces (8 = constant) represents the yield surfaces at specified
temperatures. The size of the elastic region bounded by the yield surfaces is assumed to be a
monotonically non-increasing function of thermodynamic temperature 6.

It is assumed that the elastic domain is unaltered by purely elastic deformations, i.e. by
stress histories o;(#) such that inequality (1) is satisfied for all times ¢ in the interval [t,, t,].
Thus, if for all times ¢ in the interval [, t;)

f<k
or

— if_ ﬂc'<
=% 3ga %4t 390 =0 3)

where (+) denotes differentiation with respect to time,t a purely elastic process is said to occur.
Let the strain be written as the sum of two components

€= €ut €l 4)

such that €/, = 0 whenever (3) is satisfied and €}, is a linear function of ¢, and 6 under the same
conditions. It should be noted that for the present we decline to characterize €}, and €}, by the
adjectives, elastic and plastic, respectively. Nonetheless, the quantities €}, and €}, as defined
above possess many of the attributes suggested by such terminology.

We now assume that there exist functions

w = ‘/J(e;d’ 6":11 k(i)’ 0) (5)
s = s(€i € k', 9) (6)
IQk = qk(fﬂh EZI’ k(i)~ 09 o,k) (7)

where ¢ is the specific Helmholtz free energy, s is the specific entropy, gx is the outward heat
flux vector, and 8, is the spatial temperature gradient. The parameters &, i=1,2,...
represent a finite number of measures of the effects of prior deformation history upon the
material response.

Since the elastic domain has been assumed to be invariant whenever (3) is satisfied, the yield
condition (2) must be independent of €}, under these circumstances.

Except for eqn (4) we have made no postulates as to the interpretation of, or properties of
€l and €}, when condition (3) is not satisfied. Thus, without loss in generality, we can assume
for simplicity that the history dependence of f and « is independent of €j(7), —e<7=t We

tAt t = 1, we need only require that f = x. The absence of a term which reflects the dependence of f on history in (3)
follows from the assumed invariance of the elastic domain under purely elastic deformations.
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now postulate that all of the parameters k” necessary to describe the material response are
governed by evolution-type constitutive relations of the form?

k(‘) = g(i)(o'klv EII:lv k(‘)’ 07 e,I:'l (8)

where the g(i) are assumed to be homogeneous of degree one in é}. Thus, the functions f and «
may be written in the more explicit forms

f=flow 6, €k, k(i)) 9
Kk = k(0, €}y, k). (10)
The total rate of change of f is
¢ J, 2 \ af i
=L+ L s e+ 3 e ()

where the summation convention has been employed on the tensor subscripts. Equation (11)
may be written in the more compact form

o Of o, O
f—aﬂklok‘+300+aezl€k’ (12)

by introducing the operator
- (13)
(

We proceed with the thermodynamic analysis of our material. From the Clausius-Duhem
inequality we conclude that

s=- 3—;’ (14)
d
ou= Pt (15)

when the material is in an elastic state. In eqn (15) p is the mass density. We postulate that
eqns (14) and (15) apply during plastic deformation processes as well; and by so doing, define
€y, for all deformation processes.

From eqn (15) we conclude that during any elastic process

%y

i’y
P ae,.00

I€IE g

doy = Paciaer dey, + de. (16)

If the theory is to predict that the elastic incremental stress—strain-temperature relation is to
be insensitive to the history of inelastic deformation[12] then

= (1)
seser = fiderm ) (an
32
e = (et 6). (8)

tKratochvil and Dillon[6) similarly postulate a linear dependence of k' on €}, and assert that this assumption valid for
materials in which thermally activated mechanisms of dislocation motion may be neglected. Krdner and Teodosiu[7]
discussed the conditions under which this assumption is valid.

1The theory can be extended to finite deformation by identifying €, o and p with the Green strain tensor, the second
Prola-Kirchoff stress tensor, and the density in the reference configuration. The applicability of the additive decomposition
of strain and its relation to Lee’s[8] decomposition has been discussed by Green and Naghdi[9] and more recently by
Sidoroff[10] and Kleiber{11]. Since we shall postulate that linear incremental elastic relations are unaffected by inelastic
deformation, gross distortions are ruled out. For our present purposes, it suffices to consider linear kinematics of
infinitesimal deformation.
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From eqn (17)

= i (€mm 0)+ fiP(€mm K, 0) (19)
and (18) and (19) then require that
(€ 6) = af Ul e 0)+ 8 "f U (en k). (20)
From
(2) afl((?)(er’nm 0) Syt — afl(c‘l‘)(emm k(i), 0)
(€ mn 0) — T = fi(€mm 0) = 8 2D
we conclude that £’ and a5/ may depend, at most, on 8, and that
fipie) =20
-ns
i = Fi(0) — u(€mn, k). (22)
By substituting (22) into (19) and integrating, we obtain
¥ = (€, 0) — €l €mn, k) + f P (eln, kK, ). (23)
From eqns (14) and (23) we conclude that during any elastic process
3 PY o I
ds = e,30 dey — 207 de —Wda. (24)

If the theory is to predict that the elastic incremental entropy-strain-temperature relation is
to be insensitive to the history of inelastic deformation, then

2 {7}
f —g7 =) (29)

Integrating eqn (25) we obtain
f(7)(emm k(i)’ 0) —_ f(9)(0)_ 0 - hll)(E k(f))+ h(Z)( €l k(i)) (253)

which includes the two functions hV(e”,,, k') and hP(el.,, k') still to be interpreted. We now
introduce for convenience the function 8,(€”.,. k) into eqn (25a) and obtain

FOU€mn k', 8) = FOUO) = (8 — B.(€mn, k)R (€, kD)
+ " (€ k') (26)
where
(€ mny k) = hP € kD) = Bu(€mny K VH (€ mms k).
From egns (23) and (26) we obtaint

d’ ‘»[I (Em,,, 0) + l/l"(emm k(i)) - el’(l‘bkl(er':lm k(i))
— (8~ 8u(€mn k))s"(€mn, k) (27)

tLubliner[13] and Naghdi and Trapp[14) derive relations to which (27) reduces if we neglect ¢,, and s”, respectively.
Lubliner identifies s” with the “configurational entropy™ discussed by Cottrell{15}.
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where f® was incorporated into ¢' and we have replaced h‘” by the more descriptive notation
s”. From eqns (14) and (27)

P ad"(er'nm 0) ", 0
s==—0p — 1" (€mn, k™). 28)

Similarly eqns (15) and (27) imply that

ou= o[ D gy et k) | 29)

The incremental relations for entropy and stress become

2‘,11 2 1 85

ds == 5ol de, —a—éfdo+ o del 30)
e a2¢r ' a 'p 8¢kl " ]
doy = p[ae',dae':m et +5075 40— 25 de, 31)

which reduce to the incremental elastic relations whenever inequality (3) is satisfied.
In addition to eqns (14) and (15) it can be readily demonstratéd that whenever inequality (3)
is satisfied,
—q0,z0 32)
holds; and for homogeneous temperature distributiont

(ou—oéuz0 (33

where the “thermodynamic reference stress”[1] is defined as

{2
oh=pms- (4
From (27) and (34)
8 " 6 mn 80“ ”
oh= b~ em - (0-0) B+ g | (9)

Alternatively, we can write

LU
o e 03 ©9

where

PP =y +0,s". (37

In (1] it was concluded from (33) that oy must lie within or on the current yield surface and
so an additional restriction must be satisfied by the constitutive equations. The basis for this
conclusion must now be reconsidered. In [1] it was also assumed that the o; must always lie
within or on the yield surface; whereas it has subsequently been demonstrated[3] that, in
general, oy lies outside of the yield surface during a typical inelastic event. If the loading is
terminated and o; held constant, additional inelastic or creep strains will develop. With the
development of such creep strains the yield surface gradually approaches the now stationary
stress point o;. We are thus led to the concept of an equilibrium or steady state yield surface. It
follows immediately from the arguments in [16] that if of is independent of €}; and (a) the

+1t can be shown[4] that (32) and (33) hold for all processes if g, is independent of €}, and k.
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loading is done at a sufficiently slow rate that f = k; or (b) the stress is held constant so that f
approaches x with time; or (c) the stress is reduced sufficiently so that the f = «; then, at the
instant of resumption of loading, it is necessary that o lie within or on the current yield
surface. It can be shown that, in the absence of the above restrictions on the location of the
current stress point and upon the independence of of; on €}, the confinement of of to within
or on the current yield surface is sufficient to permit satisfaction of the Clausius-Duhem
inequality. We shall examine the necessary condition on the location of o for the important
case when the first restriction is enforced, i.e. when (a) or (b) or (c) prevails. But first it shall be
necessary to consider the nature of the constitutive relation which governs e}, in some detail.

If we assume that Hooke’s law with temperature-dependent moduli governs the elastic
relations when inequality (3) holds, then from (31)

P72l = Ki(0) = Kyua) (9)
PEN%
Prcieg = Bul®). (9)

If we define an elastic compliance K., such that
KklmnKklpq 6 8nq (40)

then (31) may be inverted to produce

et = Kibadou~ KitaBlu d0-+ pK sty gott det (41)

Equation (41) leads one to the somewhat surprising conclusion that whenever unloading occurs
de,, obeys the incremental elastic constitutive relation of the virgin material; yet during loading
the elastic relation is not valid unless ¢, vanishes.t Thus, in some respects our decomposition
of the strain tensor (4) does not lead to quantities which satisfy completely the intuitive
connotations of the terms elastic and plastic. Alternatively we can write

de; = def+ del (42)

where
defi= Kijjdow — KuiiBu 46 (43)
def = [5,,,5,a + oKl g"f,‘“] del, (44)

and §; is the Kronecker delta. It follows that
€ = €+ pKiibu (45)
assuming that € = €];= ¢, = 0 for the virgin material, and that K is constant over the range

of integrations. Under the additional assumption of constant coefficients of thermal expansion,
integration of (43) results in

€5 = Kiajou — KiaiBub = €;— pKulidu. (46)

We shall call €f and € the elastic and plastic strain components.§

A constant ¢, could be absorbed into the function ¢*" in eqn (27) and thus ¢,, = const. has no significance.

1The quantities ¢; and €%; represent hypoelastic and hyperelastic definitions of elastic strain components since, in the
inelastic domain, they preserve the elasticity relationship through the Helmholtz potential, and through the incremental
Hooke’s law, respectively.
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We may now return to the consideration of the restriction placed by inequality (33) upon the
thermodynamic reference stress and hence upon the constitutive relations.

Phillips and his coworkers[3, 17, 18] have shown that at a sufficiently high temperature the
region of elastic response becomes vanishingly small. Figure 1 shows a conceptualization of the
family of yield surfaces which bound regions of elastic response for various temperatures but a
common prior history of plastic deformation. It is assumed that the envelope in stress-
temperature space has a uniquely definedt apex af}‘ at a temperature 6,.

In the limit as 6 approaches 6, the permissible values of stress are restricted to an
infinitesimal neighborhood of o-,, Thus €;; also approaches a limit €* and so for any specified
prior history of plastic deformation o approaches a fixed limit. Unless the high temperature
limit of o is identical with o};, the high temperature limit of the elastic region, inequality (33)
will be violated for some loading do. From eqn (35) we conclude that

O'kl G'kl (0 — 8.)Ct — dugmn(€mn — €) “7)
where
Cu=p - 8s" b€y (48)
dklmn =p: 8¢mn/8€’121 (49)
‘V' % 8¢mn a u]
oh= | gy - e 2o 2 (50)

=6+<8

STRESS
SPACE

Fig. 1. Family of yield surfaces.

11t is possible, indeed probable, that some degree of mdetermmacy exists. For example, if hydrostatic stress has no
influence on yielding at elevated temperatures near 8, then the limit a,, will have an indeterminate hydrostatic component.
Additional discussion of the uniqueness of a-,, is deferred to the next section.
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depend only on the history of the inelastic deformation which gave rise to the family of yield
surfaces shown in Fig. 1. In earlier theories it was assumed that ¢y = dyme = 0 so that g3 and
o are identical. The second term in (47) causes a linear departure of of from oy with
decreasing temperature. If diyn, =0, of) is independent of €,,, and so o} must lie within or on
the yield surface if (33) is to be satisfied. This restricts the gradient cy. If di..+0 the
conditions under which (33) is satisfied require careful analysis.

Let o, be contained within the domain of elastic response D, appropriate to the tem-
perature 8, < 6,. From (46) we conclude that €] occupies a domain D, in strain space which is a
one-to-one mapping of D,. From (47) and (49) we conclude that oj occupies a domain D,
(indicated by the crosshatched region in Fig. 1) in the neighborhood of the point A calculated
from the first two terms of (47). A sufficient condition for the satisfaction of (33) is that D,o be a
subdomain of D,. If dy,.,*0 it is possible for of to lie outside the yield surface. As oy
traverses the yield surface or boundary of D,, o traverses the boundary of D,e. To each point
a;i(A, B, C, .. .) there corresponds a point o{A’, B', C', .. .) as shown in Fig. 2. When oy is at A,
inequality (33) requires that o lie behind the hyperplane tangent to the yield surface at A.
Similarly for B, C,... If o} is stationary as g;; traverses the yield surface then o must lie inside
the yield surface. If o is a function of €} and therefore non-stationary it is possible to satisfy
(33) in the manner shown in Fig. 2.

YIELD
SURFACE

Fig. 2. The domains D, and D,e.

3. SIMPLIFIED THEORY

For our current purposes we shall assume that ¢, =0. Under this hypothesis, the alter-
native strain decompositions (4) and (42) become congruent and o becomes independent of
€;. If we also assume s” =0 then a-,-’}< = ojl. Thus, in the simplified theory it is assumed that the
thermodynamic reference stress of has the value of its high temperature limit a,-’}‘ for all
temperatures. In adopting the hypotheses ¢y =0, s”"=0 we reduce our theory to the more
classical form but leave as an open question the experimental means by which these quantities
may be quantitatively evaluated and hence the conditions under which the retention of ¢y, and
s” in the more general theory may be required.

We shall further restrict our considerations to the analysis of monotonically increasing
radial loadings. With the guidance of some experimental observations of Phillips and Tang[3]
we shall show that the above hypotheses lead to a theory which is in qualitative agreement with
experiment.

It has been demonstrated[19, 20] that there exists both a yield surface and a loading surface
in stress space. The yield surface bounds a domain of purely elastic response and, for a class of
quasistatic loading paths which include monotonic radial loading, the yield surface is tangent to
the loading surface. The loading surface which appears, to a first approximation, to be close to
the Mises surface encloses a region of stress space in which the rate of generation of plastic
strain per unit loading is small. Moreover, it is observed that for quasistatic loading the plastic
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strain rate vector is normal to both the yield surface and loading surface. Figure 3 shows the
qualitative features of this model for very slow (quasistatic) monotonic radial loading in
combined tension and torsion. For now, the only use that we make of these observations is to
conclude that, for such monotonic loading it is reasonable to define the magnitude of the stress
vector by means of a norm which is related to the classical -Mises criterion.

Let the square of the differential length in stress space be defined by

(dl)2 = lemn dakl d(rmn (51)
where

3 1
Gun =3 | Busbt =S| (52

We can define a new set of variables &; which are proportional to the deviatoric stress by
the linear transformation

27 1
Oy = \/3 [O'kl + SSHUPP]' (53)
From eqns (51)-(53) we find
(d1)? = dGy ddy = Bimdin AGiy A . (549

At first glance, it appears that our choice of the norm would define the space to be a
nine-dimensional Riemannian manifold R, reducible to a Euclidean manifold E, in which the
components of &; play the role of a cartesian reference frame. This is not quite the case, since
the tensor Gum. is not a positive definite metric.t Consequently we can formally compute
magnitude by means of the Euclidean norm in terms of &; but must recognize that the
transformation (53) is not linearly independent and so not all points in the space are realizable.
If we assume symmetry then we can define a five-dimensional reference frame &; such that

di? =2[(dd))* + (dG2)’ + (dd3)* + (dGa)’ + (dFs)* + (dG1)(d )] (55)

Fig. 3. The yield surface and the loading surface. (a) Yield surface, (b) loading surface, A: elastic region;
B: region of small plastic strain rate; I': region of large plastic strain rate.

tIt is positive semidefinite since it defines the distance between any two stress points which differ by a hydrostatic
component to be zero. In effect, Gy, reduces the principal stress space to the -plane.

L R T
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where
G1=01, O2=0pn, O3=0p, Os4=03 05=03.
It can be shown that there exists a simple transformation 7; = c;6; which will produce a
Euclidean metric (d/)* = (d7)(d7;). Thus, the stress space is equivalent to a Euclidean space Es,

but we shall find it more convenient to operaie in terms of eqn (54).
We define

- 2 1
&= \/3‘ (ef:—gﬁmpﬁp) (56)
and assume plastic incompressibility €2, = 0, so inequality (33) becomes
[Gu — GRELZO. (57

Since for the monotonic radial loading, both & and & are normal to the Mises loading surface
we conclude that

Ox = 0Ay, €f=€"Ay
where Ay is a unit tensor in the gy, cartesian reference frame. From (54) we conclude

AkAy =1 (58)
so, from (57)
(- ad®e? =0 (59)

where G5 = pud®, @ = pwAu, and &, ¢°, and € represent the magnitudes of the tensors in (57).
Since the magnitudes are intrinsically positive

v

Gz aé® (60)
where ‘
a=cosL(ef, o= 1.

From (35) we conclude that

d(pll dl/l” dw” dé‘P
0 = ) = P = fJm— ——
Tu=Pael~ Paef” Pde dap (61)
where we have used the total differential symbol since, for monotonically increasing radial
plastic strain trajectories, the work-hardening parameters defined by the evolution eqn (8) are
uniquely related to ef.

From (58) and (61) we conclude

_ a
oh=h=p N 62)

Thus, the magnitude of of is ¢° = p(ay/dé®) and its direction is parallel to &,. Thus (60) reduces
to & = 6° as expected.

The conclusion that &% translates in the direction of €f and hence in the direction &, for the
radial loading case is of some interest. Phillips and his co-workers[3, 17] have shown that under
quite general conditions the yield surface translates in the direction of pre-stressing. Since the
size of the elastic region is often quite limited and since o must lie within the current yield
surface (under the restrictive assumptions of the simplified theory), the theoretical conclusion
that a special interior point of; moves in the experimentally observed direction of the overall
yield surface is reassuring evidence of a degree of internal consistency in the theory.
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By introducing the stress magnitude & we can simplify the description of the yield surfaces
in stress-temperature space. The qualitative features of the behavior can be visualized by
projecting the three-dimensional representation of Fig. 1 into a & — 6 plane.

The stress—strain response can now be represented in a plane of & vs &. In such a plane we
assume that for all radial loadings at the same stress rate & and the same temperature 8 there is
a unique curve AB, Fig. 4, which represents the relationship & = &(&”) for the temperature 8
and stress rate . As in [20] we introduce a quasistatic stress strain curve AC, which, for a
given temperature 6, is the stress-strain curve corresponding to & =0. It is the sequence of
equilibrium positions due to successively larger values of applied stress; that is, each increment
of stress is applied only after the permanent strains due to the previous stress increments have
developed fully. The significance of the quasistatic stress-strain curve becomes apparent from
the following discussion.

If, while obtaining the curve AB, we interrupt the increase of stress at D and keep the stress
& constant, the strain é” will continue to increase because of creep until the quasistatic curve is
reached at K at a final plastic strain &*. If, however, after the stress reaches the value
indicated by D, it is decreased to the value indicated by I below the quasistatic line, then the
amount of plastic strain €7 accumulated at the time of crossing at E is frozen. Reloading, we
obtain the line IER. After the stress during unloading has reached the elastic region below E,
reloading can occur also in the opposite direction by crossing the limit of the elastic region E
below E. We remark that the prestressing point was at point D in Fig. 4 while the elastic region
was at EE which is below D. Only after the stress remains at D for some time, will creep have
raised the elastic region to a level KK to pass through the same stress value as the prestress.

It is also possible that the line AC may be so flat that the parallel to é€” from D may never
intersect it. Then we have unlimited creep. It can be assumed that the strain rate é° (creep rate)
is a monotonically increasing function of the distance 8p of the stress level at D from AC.
Then, as long as this distance decreases we have decreasing strain rate (primary creep); but
when this distance remains constant, i.e. when the line AC becomes parallel to DK, then we
have constant strain rate (secondary creep).

In Fig. 1 it is seen that the size of the elastic domain shrinks with increasing temperature. At
some temperature the elastic region vanishes. The temperature at which this occurs will in
general depend upon the plastic strain. Thus, in Fig. 4 the equilibrium stress—strain lines AC

o
F i
\ \/
R / / c
, 0 — 3
G
L) 2 K
1 ﬂE
A -
. : —- ¢
' /’L—:’—-’—— l\-l
|~ G :
L ! i
7 ] !
4"‘ 1 | :
/18 : |
/ ! l -
of / g g° e =p =p
/
/
/
/
i
A

Fig. 4. The &— & plane and the quasistatic stress-strain curve AC.
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and AC must change positions with the temperature. Figure 5 shows the locus of the
intersections of curves AC and AC for various values of temperature. Thus, the curve
OP,P,PP, also represents the location of the thermodynamic reference stress for various
amounts of plastic deformation. Also shown in Fig. 5 is the sequence of equilibrium stress-
strain curves for increasing temperature 6. It will be shown in the next section that 8,
decreases in value as ¢ increases. Therefore, the locus of intersections of each pair of
equilibrium stress—strain curves defines an equilibrium bounding line. Fig. 6 shows a three-
dimensional sketch in the &, €°, 6, space of the curve Omax = Omax(F, €”) the projection of which
on the & — & plane gives the equilibrium bounding line of Fig. 5, while its projection on the

M. A. EISENBERG et al.

0 — & plane gives the change in the value of 8., as prestressing increases.

ellll ecnnunng

=P
']

UPPER BOUNDS
LOWER BOUNDS

=P
€92 €

6,>6:)8) 6, Y6 90 : REFERENCE TEMPERATURE
/ROOM/

Fig. 5. The quasistatic stress-strain curves at different temperatures and the locus of intersections of each

pair of these curves.

o

.QI

-

6.

Fig. 6. Three-dimensional representation in the &, €, 0. space of the curve 8,,,, = 8,,.,(7, €").
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4. EXPERIMENTAL RESULTS

In [3, 19] experimental results were presented and on their basis certain conclusions were
drawn. These experiments as well as unpublished experiments are labelled S-4, S-5,.. . ; their
schematic loading paths are shown in Fig. 7.1 Yield surfaces have been obtained at several
prestressing points by obtaining at each point the yield curves corresponding to four different
temperatures. Thus the yield surfaces were obtained in the temperature-stress space. For
illustration and explanation of the procedure used for obtaining the yield surface we shall use as
an example test S-10, Fig. 8.

After obtaining the initial yield surface in stress-temperature space on the basis of the four
yield curves at temperatures 8 = 70, 151, 227, 265°F, the specimen was prestressed to the value
o = 3897 psi, 7 =3897 psi at temperature # =70°F. Upon reaching the prestressing point the
stress point was decreased immediately within the subsequent yield surface and this subsequent
yield curve was determined. In succession, the yield curves at increasing temperature levels
were determined in like fashion. It should be noted that the experimentally determined yield
surfaces are zero-offset or proportional limit surfaces obtained by the extrapolation technique
described in detail in [3]. We observe that the yield surface does not pass through the
prestressing point. This phenomenon was explained in [20] and it was predicted in the previous
section. From [19] it can be seen that the points of intersection of a straight line with the four
isothermal yield curves can with sufficient accuracy be represented by two straight lines in the
stress temperature space. This fact will be used now and we shall draw a series of arbitrary
parallel straight lines AA, BB, CC, DD, EE which may be parallel to the prestressing direction,
although this is not a requirement. The intersections of these lines with the yield curves are now
plotted in a stress-temperature diagram as shown in Fig. 8. We observe that the intersections
produce pairs of straight lines (AA’, AA"), (BB’, BB'),.... In Fig. 8 we see that the inter-
sections B', C', and D', lie on a straight line QQ which represents a high temperature limit of
the sequence of yield curves. This phenomenon was predicted in [2].

Careful examination of the sequence of yield curves at increasing temperatures suggests the
validity of an anisotropic sandhill analogy not unlike the classical isotropic sandhill analogy for
fully developed ideally plastic torsion[21]. It appears that the slope of the sandhill (maximum 6
gradient) varies with the orientation of the normal to the level surfaces with the preloading
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Fig. 7. Stress-paths of experiments.
tExperiments S-7. 9, 10, and 11 involve non-radial loading paths and hence the conditions under which the results of

the previous section were derived are not satisfied. Nonetheless. they produce results consistent with those of the radial
loading path tests.
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Fig. 8. Experiment S-10. First prestressing.

direction. The slope is minimum in the direction of preloading, maximum in the opposite
direction. In Fig. 8, lines BB’, CC’, and DD’ have approximately the same slope. The slopes of
the lines of the front side of the surface are markedly smaller; C'C has the smallest of the
slopes and B'B and D'D have similar slopes. Each of these lines cross the level surfaces at
points at which the normals to the preloading direction are to a first approximation parallel.
Thus, in accordance with the proposed sandhill model they would be expected to produce the
straight lines in the § — o plot shown in Fig. 8.

The straight line QQ to which the yield curves degenerate is the familiar ridge line of the
sandhill analogy. For the initial yield surface one might expect that the sandhill would be more
or less isotropic. Thus, for the Mises surface, plotted in terms of the deviatoric axes in which
the Euclidean norm is defined, we would expect that the ridge line would shrink to a point at the
apex of a circular cylindrical cone. Our experiments tend to show that for monotonic radial
loading the length of the ridge line increases with plastic strain (see Fig. 8).

The next prestressing of the same specimen S-10, shown in Fig. 9 is no longer a radial one.
This experiment indicates that, with the exception of the ridge line length, the qualitative
features observed for monotonic loadings are replicated for more general loadings.

We recapitulate our findings that at each prestressing there exists a straight line per-
pendicular to the temperature axis which is the limiting yield curve. The limiting yield curve
occurs at a limiting temperature. At this stage we shall present our results in the & — €” space
introduced in the previous section.
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Fig. 9. Experiment S-10. Second prestressing.
For the tension-torsion experiments the Euclidean norm defined by eqn (54) leads to
F=[o?+37]'"

_ , 1 ) 12
& = [terp+3tvi¥ ]
where

1
€& =€ =— ie,”.

Figure 10 in a double logarithmic scale shows the upper and lower equilibrium stress—strain
lines at 70°F. We see that the upper equilibrium stress-strain line for the indicated range of data
is a straight line which can be represented by

ip _ 0 004 [l-]u

€ ay

where €, = 0,/E is the strain at the room temperature yield stress o,.

The lower equilibrium stress—strain line approaches the upper equilibrium stress—strain line
as €”_increases. These two experimentally determined lines should be compared with lines AC
and AC of Fig. 4. The width of the yield surface in the direction of prestressing decreases as the
plastic strain increases. The widths of the yield surfaces in the direction of prestressing as a
function of &° are given in Fig. 10 for each testing temperature. It is seen that the slope of the
change in width decreases as the temperature increases with plastic strain remaining constant.
Hence, the rate of decrease in width is higher at hign temperatures than at lower temperatures.

The maximum allowable temperature 6., (°F) starts from approximately 650°F at €* =0
which is the annealing temperature and decreases according to the formula, for €*/e, > 1/10

oo
8,0, = 893 [?,] .

In the double logarithmic representation it is a straight line.
The size of the limiting yield surface, that is, the length of the straight line to which the yield
surface degenerates at 0,,,, increases with €”. As é” approaches zero we would expect the
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Fig. 10. Experimental resuits.

ridge line on the high temperature yield surface to degenerate to a point. The positive slope and
slight negative curvature of the experimentally determined line shown in Fig. 10 are compatible
with this hypothesis.

Figure 11 gives in logarithmic scale the relation between the magnitude of the thermo-
dynamic reference stress o, and €”. We observe that we can express this relation by

= ~p=-10.396
S (3.763 [ff] )
gy €y

Slai

10° 10' 10°

m'm‘lj

Y
Fig. 11. The refation between &, and €”.
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5. CLOSURE

The Coleman-Gurtin thermodynamics has been employed to study the properties of a class
of thermoplastic materials in which the evolution equation for the internal variables is given by
eqn (8) in which thermally activated dislocation motion is neglected. Although eqn (8) is a
rate-independent relation between k” and € the theory is applicable to both rate-dependent
and rate-independent materials since no particular law for the growth of é] has been assumed.

The most general form (eqn 27) of the Helmholtz potential consistent with the assumption of
insensitivity of the elastic relations to inelastic deformation has been derived. From this relation
a geometric interpretation of the Clausius-Duhem restriction has been made in stress-tem-
perature configuration space by employing the concept of a thermodynamic reference stress.
Under some simplifying assumptions a quantitative experimental evaluation of the relation
between o) and inelastic strain has been obtained from the data of Phillips and Tang(3].
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